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ABSTRACT
Forest fires have increased at an alarming rate in recent years, with
multiple consequences in Nepal’s forest ecosystem and landscapes.
The research used remote sensing and GIS technology as well as
statistical tools for developing forest fires risk models in two major
landscapes of Nepal, i.e., Terai Arc Landscape (TAL) and Chitwan
Annapurna Landscape (CHAL). A multi-parametric weighted index
model was adopted to derive and demarcate the forest fire-risk map
with risk variables such as vegetation, topographic factors, land sur-
face temperature, and proximity to the road and settlements. To
enhance the use of a fire risk map, collinearity between variables
was checked (VIF <2) and validated with the Moderate Resolution
Imaging Spectroradiometer (MODIS) hotspots and Kernel Density
Estimation (KDE) method. The MODIS hotspot data from 2001 to
2018 was also evaluated which indicates that the number of fire
counts has a strong relation (R2 ¼0.82) with the burn area.
Broadleaved forest in the pre-monsoon season is highly vulnerable
to forest fire. More than half of the total forested area (65%) is in
high fire risk, particularly in the TAL region. The study results could
assist the decision-makers to implement preventive measures by
minimizing the risk and impacts of forest fires.
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1. Introduction

Forest fire frequency is increasing globally with the significant incidents occurring in Asia
(Giglio et al. 2006). Wildfires have major environmental and ecological issues (Zhang et al.
2016), threaten human lives (Bowman et al. 2009), causing massive losses of lives and
properties (Russell-Smith et al. 2007). Satellite data can help detect forest fires in different
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land use (Kaufman et al. 1998; Justice et al. 2006) and the Geographical Information
System (GIS) and remote sensing techniques have been used widely to assess and predict
the fire frequency (Roy et al. 2002; Giglio et al. 2006; Abedi Gheshlaghi et al. 2020).
Assessment of the integrated spatial-temporal pattern of hazardous natural events is essen-
tial in disaster risk management, however, this aspect is often neglected (Loboda and
Csiszar 2007; Middendorp et al. 2013), and majority of the studies consider these two
dimensions separately. The MODIS satellite exploits middle infrared and thermal infrared
bands to identify thermal anomalies and generate fire locations and has relatively better
accuracy (Roy et al. 2002; Pereira et al. 2017). Fire-risk maps are widely developed in many
countries at coarse resolution using wildland fuel models or vegetation maps (Chuvieco
et al. 2004; Hessburg et al. 2007) as an early warning precaution. Fire risk zone is an area
where fires are likely to occur that might impact other places as well (Jaiswal et al. 2002 ;
Erten et al. 2004). An accurate risk zone mapping is essential to abate the possible effects
of fires in the forest (Jaiswal et al. 2002).

TAL and CHAL are two significant landscapes in Nepal and are considered to be
Asia’s important biodiversity ecoregion. Forest fires are one of the major ecological
threats that affect different regions of these landscapes annually, mainly in the pre-
monsoon season (WWF Nepal 2017 ). The main objective of this study was to iden-
tify where and when are the fire most likely to occur. This is crucial to understand
the factors associated with forest fires and for planning strategies to reduce forest
fires, to control and manage the sources of ignition, and to identify areas at risk
(Leone et al. 2003; Koutsias et al. 2016; Parajuli and Haynes 2015). Developing an
integrated forest fire risk zone can therefore be helpful in deciding the problems tak-
ing into account of the human and biophysical factors.

2. Study area

TAL was declared as a transboundary conservation landscape representing Asia’s most
crucial biodiversity ecoregion of the TeraiDuar Savanna and Grassland
(Wikramanayake et al. 2001) CHAL, which includes four WWF Global 200 ecoregions,
was identified in 1999 to maintain north-south ecological connectivity (Figure 1). Both
landscapes cover nine protected areas and three Ramsar sites from the elevation range
from about 100m in the Terai to over 8,000m in the Himalaya (WWF Nepal 2017).
More than 75% of the forests of the lowland Terai and Churia fall within the TAL
boundary, while CHAL covers 38% of the landscape under forest cover (Figure 2). It is
the habitat of many endangered and rare flora and fauna. However, most forests are
highly fragmented (WWF Nepal 2017). People in these areas are still heavily dependent
upon forests and ecosystem services for their livelihoods and wellbeing (GoN/Ministry
of Forests and Soil Conservation 2016).

3. Materials and methods

3.1. Independent variables

In this study, variables directly related to fire occurrences have been taken as inde-
pendent variables. Aspect, slope, elevation, vegetation, temperature, road, settlement
are independent parameters to the forest fire (Figure 3) (Sass and Sarcletti 2017).
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Figure 2. Land cover class of the study area.

Figure 1. Study area.
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3.1.1. Topography
There is an effect of terrain attributes on the forest survival following wildfire
(Kushla and Ripplee1997). Hence, under topographic variation, slope, aspect, and ele-
vation were extracted using Aster DEM (30m) as mentioned in Table 1. For slope
(Figure 4a) and elevation (Figure 4b), the points were extracted using ArcGIS,
whereas, for aspect (Figure 4c) which was in non-numerical form, calculation of pro-
portionate values was done into nine classes (Guo et al. 2016).

Figure 3. Methodological framework.

Table 1. Dataset used in the study.

Dataset
File
Type Data Type Details

Spatial
Resolution Source

MODIS Fire Data SHP Point/Polygon Longitude, latitude, burn date,
burnt area confidence

1 Km NASA/MODIS/FIRMS/ESDOS

ASTER DEM Tiff Raster Elevation, Slope, Aspect 30 m Vertex/Alaska
Satellite Facility

Land Cover 2010 Tiff Raster Land Cover Classes of Nepal 30 m ICIMOD
Land Surface

Temperature
HDF Raster Monthly temperatures of

day and night time
1Km NASA/MODIS/MOD11C3

Study Area
Boundary

SHP Polygon Outlines of all study district ICIMOD

Road SHP Lines Highway and associated Roads 1:250000 ICIMOD
Settlements SHP Points Cluster of settlements 1:25,000 OCHA Nepal
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3.1.2. Land cover
Land cover is considered to be the critical factor for spreading fire and has high
weightage for influencing the risk (Chuvieco and Congalton 1989). Hence, vegetation
analysis was carried out by grouping into seven different classifications through the
data provided by ICIMOD with the spatial resolution of 30m. Vegetation extraction
was done using ArcGIS by estimating proportionate vegetation types in the study
area (Figure 2).

3.1.3. Land Surface temperature (LST)
High temperature is directly related to the relative humidity and moisture content of
the fuels (Hussin et al. 2008). The LST algorithm uses brightness temperatures in the
MODIS bands 31 and 32 to produce day and night LST products at 1 km spatial reso-
lutions in swath format. It uses the MODIS Level-1B 1-km and creates LST HDF

Figure 4. Variables (a) Slope (b) Aspect (c) Elevation (d) Mean land surface temperature (e)
Distance from road and (f) Proximity to settlement.
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files. In this study, monthly mean land surface temperature from 2001 to 2018 was
extracted from NASA/MODIS. The pre-monsoon period (March-May) is considered
to be high-temperature tenure in Nepal that results in drought and forest fires (Matin
et al. 2017). To generate an effective model for the fire risk area, monthly tempera-
ture of the pre-monsoon season (March-May) for each year (2001-2018) was averaged
and then generated a layer (Figure 4d). 5 to 20 �C fall in temperature was observed
during this period under CHAL, and the fall in temperature above 35 �C under
TAL areas.

3.1.4. Proximity to roads and settlements
Distance to a road and settlements can be a useful tool to identify the risk areas
where maximum human activities occur (Chuvieco and Congalton 1989). A study by
Hussin et al. (2008) also indicates that the fire scars were high in the area closer to
roads and rivers due to increased movements which contributed to the fires. Hence,
proximity to road network (Figure 4e) and settlements (Figure 4f) with the resolution
of 1:250000 was used and grouped into following categories: 0-1000m, 1000-2000m,
2000-3000m, 3000-4000m, and above 4000m. Multiple ring buffers with 1000m
intervals were then carried out using ArcGIS.

3.2. Dependent Variables: fire incidents and burned area

When all the aforementioned independent variables have a favorable environment for
the ignition, forest fire incidents and their burn area or size is the only result of the
driven force. Hence, burnt incidents and its size has been taken as a dependent vari-
able in this study. Archive fire points were extracted from The Earth Observing
System Data and Information System (EOSDIS) Archive Data Tool, and a polygon
was made covering the study area from 2001 to 2018 as shown in Figure 3. For the
burn area detections, Fire Information for Resource Management System (FIRMS)
makes available information on active fires using the MODIS instrument (1 km reso-
lution) onboard NASA’s Aqua and Terra satellites (NASA/University of Maryland
2002). Detection confidence is estimated and ranges from 0% to 100%, where above
30% has better accuracy (Giglio et al. 2003). Therefore, in this study, more than 30%
of confidence data have been used. Altogether, 21272 forest fire counts (80% of total
counts) were detected, altering 20,550Km2 of the forested area. Year 2016 had the
highest counts of forest fire followed by 2009 (Figure 5). Similarly, above two-thirds
(86%) of the forest fires were seen during the pre-monsoon season (March-May).
According to the Annual Report of GoN/DHM (2014), pre-monsoon period’s annual
temperature was recorded higher than the average temperature in TAL areas.
Accumulation of dry fuel gets higher in this period making the fuel more flammable
(Sharma1996). R2 coefficient, 0.82, (Figure 6) shows a strong relationship between an
increase in forest fire counts with the area burnt (Giglio et al. 2006; Tansey
et al. 2008).
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3.3. Test for multicollinearity

Multicollinearity test was carried out before running a validation. High discrepancy
between the data was checked to precisely validate the data and to get accurate
results. High correlation between variables (multicollinearity) is a common problem

Figure 6. Relation between fire counts on the x axis and burnt area on the y axis.

Figure 5. Forest Fire trends from 2001 to 2018(x-axis-year and y-axis-number of fires).
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when estimating models, distorting the model estimation, or interfering with accurate
estimation (Chang et al. 2013; Kutner et al. 2004).To check the relationships between
the variables in the range of the data used (O’brien 2007), multiple linear regression
method can be used because it is reasonably flexible and accepts a mixture of con-
tinuous and categorical variables as well as non- normally distributed variables (Catry
et al. 2009). Variance Inflation Factors (VIF) are used to detect multicollinearity
among predictors in a multiple linear regression model (Belsley et al. 1980).
According to the thumb rule, if any of the VIF values exceed 5 or 10, it implies that
the associated regression coefficients are poorly estimated because of the multicolli-
nearity (Kennedy 1992; Chang et al. 2013).

The result F-test (<0.0011) allows a statistically significant relationship between
the two variables at a 95% confidence level (Table 2). VIF for all the eight model var-
iables ranged below 1.7, suggesting a low correlation between all the variables (Davis
et al. 2017). Hence, there is a sufficient evidence to conclude low discrepancy of data
between burn area, aspect, slope, elevation, temperature, land cover, proximity to the
settlement, and the road network. The adjusted model confirms that the explanatory
variables are closely related to the dependent, i.e., burnt size.

3.4. Determining the fire risk index model

To get a practical conclusion and avoid error to the model, weight was given based
on a review of literature, and each variable was rated on the basis of their fire poten-
tial (Chuvieco and Congalton 1989; Jaiswal et al. 2002; Andrews et al. 2005;
Hernandez-Leal and Arbelo 2006). Each independent variable with different classes
was categorized distinctly based on their forest fire influences as 1 (Very High) to 5
(Very Low). These factors were then weighted in the percentage of their influence, as
shown in Table 3. After determining each weightage, all the layers were overlaid in
ArcGIS. Hence, the risk model was developed with the equation given below.

FRI ¼ 40%LCþ 20%LSTþ 10%Sþ 10%DRþ 10%PSþ 5%Aþ 5%E (1)

where FRI is the fire risk index, LC is the land cover, LST stands for land surface
temperature, S is the slope, DR means the distance from the road, PS is the proximity

Table 2. Multiple regression of data used.

Parameters

Unstandardized Coefficients Standardized
Coefficients

Collinearity Statistics

Coefficient Std. Error Beta Tolerance VIF

(Constant) �145611.886
Burnt Size 3361.917 1275.917 0.024 0.982 1.018
Aspect �123.956 155.474 �0.007 0.979 1.022
Slope �4683.377 1695.085 �0.032 0.600 1.666
Elevation 34.478 30.802 0.013 0.621 1.611
Land Cover 9132.250 12951.623 0.006 0.998 1.002
Temperature 10043.057 4473.097 0.021 0.977 1.024
Road 19.861 12.056 0.015 0.973 1.028
Settlement 20.664 14.416 0.013 0.991 1.009
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to the settlement, A is the aspect and E is the elevation. Finally, a fire risk zone map
was produced based on these analyses.

3.5. Model validation

Validating the model will increase the predictive power or accuracy after merging
with a real-world dataset (Beguer�ıa 2006). As the model was derived from seven dif-
ferent independent variables, separate forest fire incidents data have been used to val-
idate the map. Firstly, archive fire counts were overlaid in each fire risk zone
assuming that higher fire counts fall under the higher risk rating in the assigned cat-
egory. Secondly, KDE was used to compare the result of the fire risk model. KDE’s
objective is to produce a smooth density surface of point events over the space by
computing event intensity as density estimation (Serra-Sogas et al. 2008). For both
methods, the MODIS hotspots have been used as an input.

Table 3. Weight, value and rating assigned to different variable.
Variable Weight (%) Class Value Assigned Rating

Land Cover 40 Broad leaved Closed Forest 1 Very High
Broadleaved Open Forest 2 High

Grassland 3 Medium
Shrubland 4 Low

Needle leaved Open Forest 4 Low
Needle leaved Closed Forest 4 Low

Barren Land 5 Very Low
Temp (C) 20 >35 1 Very High

30-35 2 High
25-30 3 Medium
20-25 4 Low
5-20 5 Very Low

Slope (%) 10 <5 1 Very High
5-15 2 High
15-25 3 Medium
25-35 4 Low
>35 5 Very Low

Distance to Road (M) 10 <1000 1 Very High
1000-2000 2 High
2000-3000 3 Medium
3000-4000 4 Low
4000-5000 5 Very Low

Proximity to Settlement (M) 10 <1000 1 Very High
1000-2000 2 High
2000-3000 3 Medium
3000-4000 4 Low
>4000 5 Very Low

Elevation(M) 5 57-1000 1 Very High
1000-2000 2 High
2000-3000 3 Medium
3000-4000 4 Low
>4000m 5 Very Low

Aspect 5 South 1 Very High
South West 1 Very High
South East 2 High

West 3 Medium
East 3 Medium

North West 4 Low
North East 4 Low
North 5 Very Low
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4. Results and discussion

4.1. Fire risk index model

Each factor that influences the forest fire have been discussed and analysed separately.
It is important to note that the overlapped districts of both regions have been
counted under the TAL areas as TAL has occupied most of the area. This was done
to make the comparison easy and fruitful. According to the land cover class-map,
total study area was 5220423.12 ha, and 58.9% of the study area was forested.
Broadleaved forest was found to be the major type of forest followed by needle leaved
forest. Figure 7a shows that the broadleaved closed forests have 67% of the total for-
est fire followed by broadleaved open forest (12%) representing the highest counts in
TAL areas. Sharma (1996) states that in the forest of plain areas, the continuous fuel
consists of 1 to 4 layers of species with 95% volume where Sal (Shorea robusta) leaves
accounted for 90%. Forest fire is highest in April among all the months during 2016,
followed by March in 2009 in broadleaved closed forest; Matin et al. (2017) and
Parajuli et al. (2015) have reported similar results as well. Ajin et al. (2016) found the
highest forest fire occurrence in a deciduous forest in India, where dry vegetation was
more susceptible to fire in the central and southwest parts. Jaiswal et al. (2002) and
Ariapour and Shariff (2015) state that 40% of the fire incidences were recorded
within 1 km of a road with 65% of the fires in the areas below the elevation of
1000m. Matin et al. (2017) recorded the occurrences of 60% of the total forest fire as
it has heavy leaf fall during summer (i.e., March–June), contributing to the accumula-
tion of leaf litter. Similarly, Matin et al. (2017) recorded 72% of the fire when the
temperature was above 30 �C with a slope of less than 5% in plain lands where the
results showed that 41% of the fires in Nepal are recorded within 1 km of a settle-
ment and the areas closer to the human settlements were more prone to forest fires
Parajuli. Ajin et al. (2016); Ariapour and Shariff (2015); Jaiswal et al. (2002) state that
the proximity to the roads plays a vital role in the incidence of fire corresponding to
the physical activity from tourists on roads, throwing unextinguished cigarette butts
onto the dry litter, and heating bitumen/asphalt for road surfacing. In this study,
73.33% (11 out of 15) of the forest fires occurred close to the roads. Mean tempera-
ture of March and May was above 30 �C in TAL, which occupies 74% of the fire as
shown in Figure 7b. It has been suggested that the higher the temperature, higher is
the risk of forest fire (Hussin et al. 2008; Khanal 2015; Matin et al. 2017). Mean tem-
perature of CHAL at the time was only 5 �C to 20 �C.

Two-thirds (71%) of the forest fires occurred in areas where the slope was below
25% (Figure 7c), mainly found in the southern aspect of TAL, followed by 60.19% of
the fires occurring in the western and eastern aspects with 23% slope (Figure 7d).
Sharma (1996) also claimed that most of the Terai part lies in the southernmost east
to Nepal’s west belt. However, according to Matin et al. (2017), that there was no
exact pattern of forest fires in different aspects over the whole country’s study. The
southern aspect receives more sunlight resulting in higher temperatures, which makes
fuel drier than in the north (Prasad et al. 2008). Almost 86% of the fires are concen-
trated in the elevation range of 1000m as shown in Figure 7e. Forest fires were found
to be decreased with the increase in distance from the settlement in the CHAL region
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similar to the result of Matin et al. (2017). Interestingly, fire counts were higher
within 2000m (25%) than within 1000m (17%) of settlements in the TAL area.
However, fire counts were decreasing with the distance after 2000m away from a
settlement (Figure 7f). While making the fire risk zone, the risk was predicted to be
at a distance near to habitat of 1000m. A study by Hussin et al. (2008) indicates that
people often go far from their settlement to set fire, possibly explaining why the fire
zones occur after 1000m away. Meanwhile, the road nearby from the forest can be
riskier, as 38% of fires occurred in the forest with a distance of 1000m followed by
1000-2000m (28%) as in Figure 7g. Anthropogenic ignitions frequently occurred

Figure 7. Forest fire incidents in different (a) Land cover classes, (b) Temperature, (c) Slope, (d)
Aspect, (e) Elevation, (f) Settlement and (g) Road.
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along the road corridors and other areas, where human activity was high (Keeley and
Fotheringham 2003).

Based on the weightage given to each parameter according to their influence on
forest fire, the values were overlaid using GIS techniques, and the forest fire risk map
was delineated (Figure 8). It shows that very high-risk areas cover 33.1%, followed by

Figure 8. Developed forest fire risk index map combining all influencing variables.

Table 4. Comparison of forest fire risk areas in TAL and CHAL.
Risk Zone % of Total Risk Risk Area TAL (%) Risk Area CHAL (%)

Very High 33.1 30.85 2.22
High 32.3 12.99 19.32
Medium 7.1 0.47 6.65
Low 21.1 1.33 19.72
Very Low 6.4 0.00 6.44
Total 100.00 45.64 54.36

Table 5. District with high risk zone.
Study District % of High-Risk Area Study District % of High-Risk Area

Chitwan 63 Tanahu 54
Kailali 63 Kanchanpur 50
Makwanpur 62 Nawalparasi 49
Banke 61 Syangja 43
Bardiya 58 Arghakhanchi 43
Palpa 58 Bara 40
Parsa 56 Kapilbastu 40
Dang 55 Dhading 40
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Figure 9. (a) MODIS fire hotspots merged with FRI Map, (b) Fire risk map produced by KDE
Method from MODIS fire hotspots.
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high risk areas with 32.3% (Table 4). Figure 8 clearly shows that the most of the part
of TAL is in a red alert zone allocating very high risk and higher-risk areas. 16 out of
33 districts, especially under Terai and Siwalik, fall under the risk above 40%
(Table 5), making the region vulnerable to forest fire. This also suggests that the TAL
area is much more vulnerable than the CHAL area.

4.2. Model validation

Merging the fire risk map with fire events not only delivers a consistent and complete
final risk digital map (Preisler et al. 2004) but also allows the map to be integrated
into a cohesive risk assessment process (Fairbrother and Turnley 2005). Most fire
incidents fall under very high and high-risk variables, with 87.1% of fire counts
(Figure 9a). According to Zhang et al. (2017), KDE works as an appropriate develop-
ment of a decision support system, as this method has been used as a tool for valid-
ation technique for forest fire risk map. Figure 9b shows the map generated using the
KDE method. The comparison of risk areas identified by validation of fire points and
KDE in Table 6 illustrates that high and very high-risk areas are almost similar to the
area generated by the fire risk index map. In contrast, the low-risk zone is decreased,
and very low risk has been increased in KDE. It could be because of the less concen-
trated fire points in low and very low risk zones.

5. Conclusion

Analysis of the MODIS hotspot and all the influencing variables from the time period
2001 to 2018 indicates that the TAL area is highly sensitive to forest fire in compari-
son to CHAL area. High surface temperature, low rainfall, and the amount of accu-
mulated fuels in the forest contributes to the forest fire. In particular, following
factors are responsible for the high risk of forest fire in these two landscapes: broad-
leaved closed forest; average temperature of 30�-35�C; slope<5�; south and south-
western aspect; elevational range of <1000m in close proximity of settlement in TAL
within 2000m, and, CHAL at 1000m; and the distance of < 1000m from the road
respectively.

65.4% of the total area of the TAL is under a high fire risk zone; however, only
21.54% in CHAL is likely to be in the high-risk zone. Forests are most prone to high
fire risk during the month of April in Nepal. Therefore, realizing TAL’s vulnerability,
reliable and effective fire mitigating measures should be adopted, and fire prepared-
ness training to the local stakeholders and managers should be encouraged. Nepal

Table 6. Comparison of risk area with FRI and KDE.
Risk Zone % of Risk Area from FRI % of Risk Area from KDE

Very High 33.1 32.8
High 32.3 32.5
Medium 7.1 6.0
Low 21.1 15.7
Very Low 6.4 13
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faces tremendous forest fires during the dry season for which efficient forest fire risk
assessment, warning, and monitoring system need to be improved (Matin et al.
2017). These variables should be taken into care, and areas under these features
should be carefully monitored throughout the year by community-based firefight-
ing groups.
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